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ABSTRACT

A new wavelet analysis methodology is proposed to estimate the statistics of steep waves. The method is
applied to open ocean wave height data from the Southern Ocean Waves Experiment (1992) and from a
field experiment conducted at Duck, North Carolina (1997). Results show that high wave slope crests
appear over a wide range of wavenumbers, with a large amount being much shorter than the dominant
wave. At low wave slope thresholds, all wave fields have roughly the same amount of wave crests regardless
of wind forcing. The steep wave statistic decays exponentially with the square of the wave slope threshold,
with a decay rate that is larger for the low wind cases than the high wind cases. Comparison of the steep
wave statistic with independent measurements of the breaking wave statistic suggests a breaking wave slope
threshold of about 0.12. The steep wave statistic does not scale with the cube of the wind speed, suggesting
that other factors besides the wind speed also affect its level. Comparison of the steep wave statistic to the
saturation spectrum reveals a reasonable correlation at moderate wave slope thresholds.

1. Introduction

Breaking waves are a ubiquitous phenomenon of the
world’s oceans. They disrupt the aqueous boundary
layer causing surface renewal, thereby enhancing the
diffusion of gases and heat across the air–sea interface.
Breaking waves are also responsible for the dissipation
of wave energy and thus directly affect the evolution of
the wind wave spectrum. With advances in technology,
new direct observations of the two-dimensional spatial
surface wave topography have been made. These data
allow for the opportunity to go beyond linear analysis
and study the nonlinearity of the surface wave field, in
particular, the statistics of steep and breaking waves.

Recent field studies of breaking waves have been
varied. Ding and Farmer (1994) obtained breaking-
surface wave data from a hydrophone array correlating
breaking wave events with acoustical noise produced by
bubbles in the water column. They observed a distribu-

tion of the speed of breaking wave propagation and
found that the results were 45%–75% smaller than the
phase speed of the dominant wind waves. This implied
that most breaking events occur with waves shorter
than the dominant waves. Gemmrich and Farmer
(1999) performed conductivity measurements at high
sea state in the open ocean. They again found breaking
wave events over a wide range of wave scales with
breaking occurring predominantly at wave scales be-
tween 5% and 80% of the dominant wave scale. In
addition, they found that the fraction of breaking wave
events relative to the total number of dominant waves
did not scale with wind speed or wave age. A scaling
based on wind energy input to waves was proposed and
found to collapse the diverse datasets obtained by the
authors.

Banner et al. (2000) analyzed three different datasets
with different wind conditions in an effort to under-
stand the major environmental parameters that control
the breaking of waves. They surmised that the prob-
ability of dominant wave breaking is strongly correlated
with significant wave steepness. Banner et al. (2002)
further extended the above analysis of the breaking
probability to high wavenumbers with the inclusion of
scales smaller than the peak wavenumber. They found
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that a spectral measure of wave steepness in the form of
the spectral saturation was strongly correlated with the
probability of breaking.

Phillips et al. (2001) obtained radar measurements of
breaking waves off the coast of Hawaii. They found that
at a set wind speed the number of events detected per
unit area per unit time was of the same order as that
found by Ding and Farmer (1994). However, the distri-
bution of scales of breaking wave events was narrower
with the fastest breaking wave events possessing a
speed of about 60% of the dominant wave speed. In
addition, they calculated �(c)dc, the average length of
breaking wave crests per unit surface area of ocean
surface traveling at velocities in the range (c, c � dc).
They found that the amount of breaking waves in-
creased as the scale decreased, indicating the impor-
tance of small-scale breaking to energy dissipation.

Melville and Matusov (2002) obtained images of
ocean whitecaps from an aircraft. They tracked the evo-
lution of whitecaps using image velocimetry and thus
were able to calculate the breaking wave statistic, �(c).
Their observations indicated an exponential depen-
dence of �(c) on c with a local approximation consis-
tent with �(c) � c�6 for large values of c and �(c) � c�1

for small values of c.
While most of the previous observational studies

used whitecaps or bubbles to detect breaking wave
events, new mathematical methods of data analysis
have been exploited in trying to detect breaking wave
phenomena from the wave height record. In particular,
Liu (1994) used the wavelet transform to analyze ocean
wave data taken with a wave wire mounted on a buoy.
He proposed to designate as a breaking wave any wave
that possessed a value for a�2 that exceeds a limiting
fraction of the gravitational acceleration, where a is the
wave amplitude and � is the angular frequency ob-
tained from averaging over a selected high-frequency
region of the wavelet transform.

Although Liu’s (1994) approach is limited to a nar-
rowband wave system and cannot be applied to open
ocean surface wave data, the wavelet transform ap-
proach, in principle, should be suitable for detecting
wave breaking. This is because previous theoretical
studies (Dold and Peregrine 1986; Banner and Tian
1998) suggest that breaking wave events are associated
with wave groups with strong nonlinearity rather than
with a single steep wave, and wave groups can be de-
tected by the wavelet transform.

Dold and Peregrine (1986) examined the evolution of
wave groups numerically using a fully nonlinear two-
dimensional, free-surface computational model. They
found that whether the initial wave group evolved to
breaking was dependent not only on the initial carrier
wave slope but also on the number of waves N in the
modulation interval. For a given N, breaking always
occurred above a particular wave slope threshold value.
Banner and Tian (1998) performed a numerical study
of the onset of wave breaking for unforced nonlinear

modulated wave groups through the use of a wave slope
threshold variable. Using the same code as Dold and
Peregrine (1986), they examined the evolution of wave
groups in terms of the relative wave growth rates of the
local mean energy and momentum densities. They
found evidence of a universal threshold for the local
relative growth rates of the mean momentum and en-
ergy densities that differentiates between the breaking
and nonbreaking wave groups.

In this study, we propose a new approach to estimate
the statistics of steep wave events (wave groups of large
amplitude) by applying the wavelet transform to broad-
band open ocean wave fields. We make use of the spa-
tial wave topographic data obtained during the South-
ern Ocean Waves Experiment (SOWEX) and the ex-
periment conducted off Duck, North Carolina, in
September 1997 (hereafter termed the DNC experi-
ment). The results are then used to examine how the
statistic of nonlinear wave groups may correlate with
the true breaking wave statistic. In this study, we
present a one-dimensional data analysis based on the
assumption that all steep wave events propagate in the
mean wind direction. In a companion paper (Scott et al.
2005), we examine the directionality of the steep wave
statistics.

2. Experiments
The SOWEX was an international collaboration that

focused on the acquisition of meteorological data over
the Southern Ocean for a range of wind speeds. The
objective of the experiment was to increase the present
knowledge of the variability of the wind stress under a
variety of sea states and wind speeds. An aircraft with
a Scanning Radar Altimeter flew over the Southern
Ocean off the southwest coast of Tasmania, Australia.
The Scanning Radar Altimeter is a device that gathers
two-dimensional information of the sea surface by scat-
tering high-frequency waves off it. The ocean fetch was
unlimited and the 10-m mean wind speed decreased
from almost 26 to 2 m s�1 over the expanse of the
experiment. Details about the instrument and experi-
ment can be found in Banner et al. (1999).

The DNC experiment was a field experiment con-
ducted near Duck, North Carolina, in September 1997.
During this experiment, an airborne scanning laser
ranging system (ATM) captured the spatial topography
of ocean surface waves. The dataset consists of two-
dimensional images of surface wave height with the
wind blowing 45° with respect to the line of flight. The
wind was quasi steady with a speed of 9.5 m s�1. Details
concerning the experiment can be found in Hwang et al.
(2000).

3. Data analysis

a. Definition of the steep wave statistic

The steep wave statistic in this study is defined based
on the formulation of the breaking wave statistic by
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Phillips (1985). Phillips (1985) proposed a distribution
function �(c) such that �(c)dc represents the average
total length per unit surface area of breaking wave
fronts that have intrinsic velocities in the range c to c �
dc. Alternatively, a distribution function may be de-
fined in terms of the wavenumber such that �(k)dk �
�(k, �)kdkd� is the average total length per unit surface
area of breaking wave fronts that have wavenumbers in
the range k to k � dk. Here the wavenumber k is de-
fined as the spatial change in wave phase with distance.
In this study, the steep wave statistic, �T(k, �) (or �T(k)
� ��T(k, �)kd�), is defined as the total length of steep
wave fronts with wave slope exceeding a set threshold T
per unit surface area per unit wavenumber vector (or
per unit wavenumber). The steep wave statistic, �T(k)
is a dimensionless quantity that, when integrated over
all wavenumbers yields 	 � ��T(k)dk, the total length
of steep wave fronts above wave slope threshold T per
unit surface area.

In general, the slope of an individual wave cannot be
determined uniquely for random seas with a broad-
banded spectrum. Thus, the wave slope is defined using
the wavelet transform such that the estimated slope of
an individual steep wave event is, in fact, the average
wave slope of a small group of waves that are detected
by the wavelet transform.

b. Wavelet transform

The original motivation for the use of the wavelet
transform was the desire to obtain wavenumber infor-
mation from a signal f(u), where u is a space variable,
without excessive loss of resolution in space. This desire
was not fulfilled by the Fourier transform, which gives
information about the wavenumber content of a signal
but gives no information about the location of events at
specific wavenumbers in space. The wavelet transform
of signal f(u) in this study is defined as

Wf
a, s� � Re��
��

�

f
u�
1

a2 ��u � s

a �du�, a � 0, 
1�

where

�
a, s� � �
s�a� � e�iK0s�ae�1�2
s�a�2, K0 � 5 
2�

is the Morlet wavelet, a is the scale, and s is the location.
The Morlet wavelet is an analytic solution of the linear
wave theory equations whose characteristic feature of
resembling a wave group warrants its use in under-
standing the local features in wave data. The wavelet
transform possesses two aspects. When applied to a
signal it effectively searches the signal and finds regions
where the data looks like itself; that is, it searches for
local regions of the signal that have wavelike charac-
teristics. The normalization used is not the classical
a�1/2 normalization that preserves energy but rather a
normalization that preserves wave slope. For example,
if the signal is interpreted as wave height, the local peak

value of the inner product of the signal and the Morlet
wavelet produces a measure of the average wave slope
over the support of the wavelet. Thus, a signal with a
high wave slope event with its scale a0 and its crest
position s0 will have a wavelet transform characterized
by a large peak value of Wf at (a0, s0), and the peak
value is proportional to the average slope of the signal
in the neighborhood of s0. Furthermore, two sinusoidal
signals whose wave slopes, S � Ak (where A is wave
amplitude and k is wavenumber), are equal will have
equal peak values of Wf(a, s) at each of the signals’
respective scales (see the appendix). The preservation
of the signal’s average wave slope in the “local” sense
as described above allows for the detection of high
wave slope crests that are part of wave groups in the
data.

The wavelet analysis applied here is very different
from other conventional analyses, which attempt to
quantify the local characteristics of waves by the exami-
nation of individual waves identified by the crossing of
the zero level. Though the zero-crossing methodology
is one of the traditional methods of calculating the
probability of breaking, the issue of how to deal with
small-scale riding waves exists. In addition, it allows for
only one breaking wave event per wave cycle. The
wavelet analysis methodology outlined here, on the
other hand, is a multiscale matched filtration process
and allows for many steep wave events over the dom-
inant wave cycle.

c. Estimation of the steep wave statistic, �T(k)

1) WAVELET ANALYSIS OF SIGNAL

The SOWEX dataset is divided into four individual
subsets designated by the experimental day. Each of
these subsets in turn contains wave height images with
different resolutions in the along-flight and cross-flight
directions. Initially, the SOWEX and the DNC datasets
were preprocessed. A nine-point box filter was applied
to the DNC dataset for the purpose of smoothing out
the high frequency noise. The occasional dropouts,
which were never more than three sample points long,
in the SOWEX dataset were linearly interpolated over.
The SOWEX and DNC datasets were rotated and then
bilinearly interpolated such that the y axis is in the
direction of the mean wind and all datasets possess the
same resolution in the along-wind and cross-wind di-
rections.

For each dataset analyzed, columns of the data,
which constitute data in the direction of the wind, were
stripped off. These data vectors subsequently under-
went the wavelet transform. Wavelet analysis was per-
formed over a set of discrete scales (with a constant �a)
that extend from a scale larger than the dominant wave-
length down to a scale before the Fourier spectral noise
floor in the data appears. For the SOWEX and DNC
datasets the largest scales corresponded to 1.4 and 1.8
times the dominant wavelength, respectively. The cut-
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off scale was obtained from the inspection of the Fou-
rier power spectrum. For the DNC dataset the wavelet
transform at scale values with equivalent wavenumbers
above 0.9 rad m�1 were not taken. For the SOWEX
dataset the high wavenumber cutoff was 0.09 rad m�1.

Each column vector of the wave height image admits
a two-dimensional function, Wf(a, s), dubbed the wave-
let transform. The conversion of the scale a used in the
wavelet analysis to the real wavenumber scale k is ob-
tained via a conversion constant C. The wavenumber
associated with the wavelet at scale a is taken to be the
wavenumber associated with the peak in the power
spectrum of the wavelet. The one-to-one relationship
between wavenumber and wavelet scales can be ex-
pressed as

k �
C

a
. 
3�

The Morlet wavelet at different scales and their respec-
tive Fourier power spectra are shown in Fig. 1.

A typical example of a wavelet transform is shown in
Fig. 2. A contour plot of the wavelet transform along
with a plot of the analyzed signal is shown from 10 June
of SOWEX. The wavelet transform Wf(a, s) contains an
array of high wave slope events associated with wave
groups. To obtain a distribution of these events, a wave
slope threshold is applied over it. All points with a
wavelet transform value above a set threshold are se-
lected. These points appear as aggregates in local re-
gions of Wf(a, s), enclosed by the dashed lines. From

these groups of points, the point of highest value is
sought. The highest points or local maxima throughout
the wavelet transform are obtained by using a nine-
point box filter. The filter is moved throughout the
transform and from these groups selects only those
points that are larger than the surrounding eight points.
The local maxima that satisfy the condition of being
above the set threshold appear in the figure as asterisks.
These asterisks are defined as individual steep wave
events in the subsequent analyses. It is noteworthy that
more than one local maximum (asterisk) can exist
within a single region enclosed by a dashed line when
the threshold is set low.

The wave slope threshold is understood in terms of
the wave slope associated with individual sinusoids.
Thus the wave slope of an event associated with a wave
group calculated via the wavelet transform is an equiva-
lent wave slope or the wave slope of a sinusoid with an
average wavenumber and average amplitude equiva-
lent to the Morlet wavelet. The conversion from the
wavelet transform threshold to the equivalent wave
slope threshold is accomplished by first taking a pure
sinusoid f(u) � Asinku, of known wave amplitude A
and wavenumber k and obtaining the wavelet trans-
form of the signal, Wf(a, s). The peak value of the
wavelet transform is then related to the wave slope Ak
to determine the conversion constant  :

� �
Ak

max�Wf
a, s��
. 
4�

FIG. 1. (top) Morlet wavelets at different scales and (bottom) their respective Fourier power
spectra. Scales a � 28 (thin line), 21 (dotted line), 14 (thick line), and 7 (thin line with dots).
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With real surface wave height data, this constant is used
to convert from the local maximum value of the wavelet
transform to the real equivalent local wave slope
threshold T.

Each high wave slope event in a data vector, denoted
by asterisks in Fig. 2, has associated with it a scale value
and an along-wind position value. The scale values to-
gether form DT(a), where DT is the number of events of
scale a exceeding a set wave slope threshold T. The
same method of analysis outlined above is applied to all
of the data vectors (with index n) that are part of the
full two-dimensional wave height image to obtain a set
of distributions Dn

T(a).

2) FORMATION OF THE STEEP WAVE STATISTIC

The lambda function �T(a) at a set wave slope
threshold T as a function of scale a is calculated first by
summing the distributions over n and then normalizing
the result.

Thus, the final result for �T(a) is

�T
a� �

�
n�1

N

DT
n 
a� � �x

Ã � �a
. 
5�

Here, the cross-wind sampling distance �x is taken to

be the length of the high wave slope crest associated
with the steep wave event, �a is the differential scale, N
is the total number of data vectors, and Ã is the total
area of the image analyzed.

For a single image, �T(k) is calculated from �T(a) by
applying a normalization factor. Since the differentials,
da and dk, are opposite in sign, �T(k) and �T(a) are
related to each other by the equation:

�T
k�dk � ��T
a�da. 
6�

Therefore, �T(k) can be written as

�T
k� � ��T
a�
da

dk
, 
7�

where a is related to k via Eq. (3). Thus �T(k) can be
written as

�T
k� � �T
a�
C

k2 � �T
a�
a2

C
. 
8�

The result �T(k), the steep wave statistic, is a dimen-
sionless function. This function is dependent on the
wave slope threshold T applied and is quantitatively a
measure of the amount of high wave slope events in the
wave field. The main assumption implicit in this calcu-
lation is that all wave fronts are perpendicular to the
mean wind. (We will demonstrate the validity of this

FIG. 2. (bottom) The 10 Jun SOWEX surface elevation signal and (top), (middle) contour plots of its
wavelet transform. Solid contour lines are drawn at every 0.04. Dashed contour lines are at wave slope
threshold of (top) 0.02 and (middle) 0.06. Wave crests exceeding wave slope threshold of (top) 0.02 and
(middle) 0.06 are marked with asterisks.
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assumption in the companion paper.) This quantity is
averaged over many datasets to obtain the averaged
steep wave statistic. For the DNC dataset, 23 realiza-
tions of the steep wave statistic were averaged. For the
SOWEX data subsets, hereafter identified as the 10, 12,
13, and 14 June experiments, 15, 18, 36, and 6 realiza-
tions, respectively, were averaged.

3) DOPPLER CORRECTION FOR THE STEEP WAVE
STATISTIC

The Doppler shift of the waves due to the aircraft
motion is a major source of error. The error associated
with this effect is estimated in terms of the apparent
and actual value for �T(k). From the steep wave sta-
tistic associated with the DNC and SOWEX datasets
the wavenumbers at a set threshold are selected along
with their corresponding values for �T(k). The Doppler
shift effect in the value of �T(k) is traced as the wave-
number changes due to the Doppler effect. The steep
wave statistic can be written as

�T
k� �
L

Ã � �k
, 
9�

where L is the total length of steep wave crests at a
specific wave slope threshold T over a small interval �k
in wavenumber. Depending on the aircraft speed and
direction, the apparent wavenumber kapp is shifted
from the true wavenumber ktru along with an accom-
panied interval change from �ktru to �kapp. In addition,
the shift in wavenumber produces a shift in the wave
slope threshold Ttru to a new apparent wave slope
threshold Tapp since the surface elevation is not affected
by the Doppler shift. All three corrections were applied
to obtain the true values of �T(k). This Doppler cor-
rection was also performed assuming that all wave
fronts are perpendicular to the mean wind.

4. Results and discussion

a. Detection of steep wave crests

The wavelet analysis algorithm of the surface wave
topography data vectors is successful at pinpointing
high wave slope crests that are part of steep wave
groups. Figure 2 shows a space series taken from 10
June of SOWEX along with a contour plot of the wave-
let transform values. Asterisks identify high wave slope
events that exceed a wave slope threshold of 0.02 (Fig.
2, top) and 0.06 (Fig. 2, middle). The algorithm is able
to perform a multiscale filtration of the data to reveal
steep wave crests at both large and small scales. The
steep wave slope events identified by the asterisks at
small and large wavenumbers are clearly correlated
with large and small steep wave crests that are part of
wave groups in the surface height signal. Some asterisks
do not lie directly at the points of maximum surface
elevation in the signal. This is due to the inner product

associated with the convolution. It attempts to make
the best fit of the Morlet wavelet to the data and occa-
sionally falls short of locating wave crests in agreement
with the actual crest locations.

b. Characteristics of the steep wave statistic

The estimates of the steep wave statistic �T(k) for
the four SOWEX cases and the DNC experiment are
shown without the Doppler correction in Fig. 3 and
with the Doppler correction in Fig. 4. Although the
results are qualitatively very similar, the estimated val-
ues of �T(k) may vary by a factor of 2 or more due to
the Doppler correction. We therefore make use of the
results with the Doppler correction in the subsequent
analyses.

The curves in Fig. 4 in general display low values of
�cT(k) below the dominant wavenumber (indicated by
the vertical lines) and increased amounts of steep wave
crests at high wavenumbers. The results of the steep
wave statistic bear qualitative resemblance to the
breaking wave results of Ding and Farmer (1994). They
found the average scale of breaking to be much smaller
than the dominant wind wave. The steep wave statistic
is consistent with this result with the peak in the steep
wave statistic occurring at a much higher wavenumber
than the dominant wind wave.

What is clearly shown in these plots is that all
datasets have approximately the same average length of
wave crests per unit area per unit wavenumber, regard-
less of the wind forcing or the wave field, at the lowest
wave slope threshold of 0.01. Thus, statistically the total
number of wave crests is similar for all cases if you
count all wave crests (low and high wave slope waves)
in the wave field.

Differences in �cT(k) become apparent with in-
creases in the wave slope threshold T. For the SOWEX
dataset, Fig. 4 shows that �cT(k) at various wavenum-
bers decreases much more rapidly with increasing T for
the low wind cases than for the high wind cases. This is
to be expected since, to the first order, the higher wind
cases tend to possess larger amounts of high wave slope
events.

Figure 5 shows that �cT(k) at a fixed k from both the
SOWEX and DNC datasets decays exponentially with
wave slope threshold squared, that is, it approximately
follows the form of

�cT � �oe�pT2
, 
10�

with a fixed exponent p and multiplicative constant of
��. Here, we have chosen �cT(k � 0.04 rad m�1) from
the data of the SOWEX and �cT(k � 0.4 rad m�1) from
the DNC data since these wavenumbers are signifi-
cantly beyond the dominant wavenumber but above the
point of noise for all the datasets. The value of the
exponent p can be determined by fitting the data to a
straight line in the least squares sense, and is designated
as pfit. The estimated values of pfit for each day of
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FIG. 3. Steep wave statistic �T(k) vs k for different wave slope
threshold values. Numbers in the figure indicate slope threshold
T. (a) DNC experiment (mean wind speed 9.5 m s�1), (b) 10 Jun
SOWEX (mean wind speed 25 m s�1), (c) 12 Jun SOWEX (mean
wind speed 24 m s�1), (d) 13 Jun SOWEX (mean wind speed 8.5
m s�1), and (e) 14 Jun SOWEX (mean wind speed 6 m s�1).
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FIG. 4. As in Fig. 3 but for corrected steep wave statistic �cT vs
k. Vertical line indicates dominant wavenumber.
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SOWEX are plotted against the friction velocity in Fig.
6a. The general decreasing trend in the exponent pfit

with increasing u* is observed as expected. However,
pfit does not seem to be a simple function of u*; the data
at the two lowest wind days show very different results
of pfit even if the wind friction velocity is almost the
same.

c. Comparison of the steep wave statistic with the
theory by Cartwright and Longuet-Higgins

Cartwright and Longuet-Higgins (1956) considered
the problem of the expected number of maxima and
minima in a time series of the sea surface displacement
and their probability distribution. They found that, for
a narrowband random process, the probability density

function for extreme surface displacements is the Ray-
leigh distribution

fmax
�� � �e��2�2, 
11�

with � � �max/m0, where �max is a variable delineating
local positive maxima and m0 is the root-mean-square
surface displacement. According to their theory, the
probability density function f̃max(�̃) for extreme sur-
face displacements that exceed a threshold �̃ becomes

f̃max
�̃� � �
�̃

�

�e�� 2�2d� � e��̃2�2. 
12�

For a narrowband system, a local displacement maxi-
mum that exceeds �̃ should be roughly equivalent to a
local wave crest whose wave steepness exceeds k0m0�̃,

FIG. 5. The steep wave statistic �cT(k) vs wave slope squared
(T2). Data designated by solid lines. Least squares fit designated
by dots connected by solid lines. (a) SOWEX (k � 0.04 rad m�1)
and (b) DNC experiment (k � 0.4 rad m�1). The thick solid line
is Phillips et al.’s (2001) estimate of �. The thick dashed line is
Melville and Matusov’s (2002) estimate of �.

FIG. 6. (a) Exponents pfit (circles) obtained from the least
squares fit of �cT(k) vs T2 at k � 0.04 rad m�1, and pmodel
(crosses) obtained from the theoretical model, plotted against u*
for SOWEX. (b) Exponent pfit vs pmodel for SOWEX. Correlation
coefficient � � 0.94.
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where the representative wavenumber of the system is
k0. Therefore, the same statistic can be expressed as

f̃max
T� � e ��1/2
T�k0m0�2�; 
13�

that is, it decays exponentially with the square of the
wave slope threshold T. It is noteworthy that this pre-
dicted form is consistent with our observational results
of �cT(k � k0) shown in Fig. 5. Furthermore, our ob-
servations show that �cT(k � k0) decays exponentially
with the square of the wave slope threshold T over a
relatively large range of k (roughly from the peak wave-
number kp to 5 times the peak wavenumber), although
the theory of Cartwright and Longuet-Higgins (1956)
should be applicable only for a narrowband spectrum in
the vicinity of the peak wavenumber.

Equation (12) allows for the estimation of the con-
stant exponent p that multiplies T2, if the representative
wavenumber k0 and the root-mean-square surface dis-
placement m0 are known. From the experimental data,
k0 has been chosen to be 0.04 rad m�1 for the SOWEX
data. It is not possible to unambiguously determine m0

from the observed broadband spectra because we may
integrate the wave height wavenumber spectrum over
an arbitrary range �k in the vicinity of k0 to estimate
m0. Here, we have fixed �k empirically to 0.001 so that
the exponent p determined from Eq. (12), designated as
pmodel, best matches pfit determined from the observa-
tions. As long as the same �k value is used for all cases,
we may examine the relative trend of pmodel versus pfit.
Figure 6b indeed shows that pmodel and pfit correlate
reasonably well having a correlation coefficient � �
0.94. This suggests that the theory of Cartwright and
Longuet-Higgins (1956) is consistent with our observa-
tions of the steep wave statistic.

d. Relationship between the steep wave statistic and
the breaking wave statistic

If it is conjectured that the steep wave statistic at a
particular high wave slope threshold is equivalent to the
true breaking wave statistic, the trend of �cT(k) from
the SOWEX dataset implies that there are more break-
ing waves at higher wind forcing conditions. Further-
more, if the breaking wave statistic �(k) is known in-
dependent of �cT(k), it is possible to estimate a break-
ing wave slope threshold by comparing the two. Phillips
et al. (2001) calculated �(c), with a correction for the
advection of breaking wave crests by swell, over a range
of wave speeds from 2.5 to 6 m s�1 at the mean wind
speed of 9.3 m s�1. Melville and Matusov (2002) re-
ported �(c) at three wind speeds of 7.2, 9.8, and 13.6 m
s�1. Therefore, the results of Phillips et al. (2001),
Melville and Matusov (2002; case of wind speed 9.8 m
s�1), and the DNC dataset all have the same wavenum-
ber range and were obtained under approximately the
same wind forcing conditions of U10 � 9 m s�1. Figure
5b shows a linear fit to the natural logarithm of �cT(k �
k0) plotted with the square of the wave slope threshold

at k0 � 0.4 rad m�1 for the DNC dataset. The horizon-
tal dashed and solid lines represent the value of the
breaking wave statistic at k0 � 0.4 rad m�1 obtained by
Melville and Matusov (2002) and Phillips et al. (2001).
The intersection between the linear fit and the horizon-
tal lines gives two estimates of the wave slope threshold
at which the steep wave statistic becomes identical to
the breaking wave statistic. The corresponding wave
slope threshold is between approximately 0.11 and 0.13,
with 0.12 being the midvalue. These values are much
lower than the value for the traditional wave slope
threshold of 0.4 first proposed by Stokes.

Dold and Peregrine (1986) conducted numerical ex-
periments in which two-dimensional nonlinear wave
packets of different initial wave slope were allowed to
propagate. They were able to obtain the result of the
wave slope threshold above which wave groups devel-
oped into breaking waves versus the number of waves
in a wave group. It is of interest to note that for a wave
packet containing five waves, the corresponding wave
slope threshold is approximately 0.11 according to Dold
and Peregrine (1986). This value is close to our break-
ing wave slope threshold extrapolated from the data.

Assuming that the steep wave statistic at the equiva-
lent slope of 0.12 agrees with the breaking statistic, we
may estimate the breaking statistic for all the SOWEX
cases. Figure 7a shows the estimates of �cT(k) for the
DNC experiment and SOWEX at T � 0.12. Also plot-
ted are the Phillips et al. (2001) and Melville and Ma-
tusov (2002) estimates of the breaking wave statistic.
The results of the DNC experiment are close to that of
the Phillips et al. (2001) and Melville and Matusov
(2002) result at U10 � 9.8 m s�1 as expected. The
SOWEX results of 10 and 12 June are much higher
because the wind speed was much higher on these two
days. To remove the wind speed dependence, both
�cT(k) and �(k) are scaled with the cube of the wind
speed, as suggested by Melville and Matusov (2002), in
Fig. 7b. The scaling collapses the datasets of Melville
and Matusov (2002) while only reducing the variability
between the SOWEX data within one order of magni-
tude or so. For example, the steep wave statistics from
10 and 12 June are significantly different even if the
wind speed was similar. This difference is likely because
the wave fields were at different stages of development
on these two days. All of this suggests that wind speed
alone may not be the appropriate scaling for the num-
ber of steep waves at T � 0.12.

e. Relationship between the steep wave statistic and
the wavenumber spectrum

To understand the relationship between the steep
wave statistic and the wavenumber spectrum, �cT(k)
versus B(k), the saturation spectrum for all experimen-
tal cases is plotted in Fig. 8 at three different wave slope
threshold values. The two-sided saturation spectrum is
defined as
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k, 	� � k4 � S̃
k, 	�, 
14�

where S̃(k, �) is the two-sided wavenumber spectrum.
Doppler correction according to the methodology out-
lined in Banner et al. (1999) and integration over all
angles yields the one-sided omnidirectional saturation
spectrum, B(k). Correlation coefficients were calcu-
lated for each set of curves at T � 0.01, 0.05, and 0.09
and are shown in Table 1. The correlation coefficients
for each dataset increase in value with increases in the
wave slope threshold from T � 0.01 and T � 0.05 with
the data becoming sufficiently noisy at T � 0.09 to
disrupt the correlation. In particular, waves exceeding
T � 0.09 are detected only if the degree of saturation
B(k) is above 0.0005. Overall, the correlation between
�cT(k) and B(k) is reasonably strong. For a given T and

FIG. 7. (a) Estimates of �cT(k) at wave slope threshold T � 0.12
for SOWEX and DNC experiment (thick lines). Phillips et al.’s
(2001) estimates of �(k) are designated by crosses. Melville and
Matusov’s (2002) estimates of �(k) are shown at U10 � 7.2 (�),
9.8 (.�), and 13.6 m s�1 (*�). (b) As in (a) except �cT(k) and �(k)
are multiplied by (10/U10)3.

FIG. 8. �cT(k) vs B(k) for the DNC experiment (�) and
SOWEX 10 (.�), 12 (o�), and 13 (x�). Wave slope threshold is
(a) T � 0.01, (b) T � 0.05, and (c) T � 0.09.
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B(k), the value of �cT(k) is mostly within one order of
magnitude.

Banner et al. (2002) found that the breaking prob-
ability was correlated with a nondimensional measure
of the spectral steepness in the form of the saturation
spectrum, B(k). If the steep wave statistic at high wave
slope thresholds is equivalent to the breaking wave sta-
tistic, then it is expected that �cT(k) at high wave slopes
will be correlated with B(k). Figure 8 indeed shows that
�cT(k) increases with B(k) at moderately high wave
slope thresholds.

5. Sensitivity and error analyses

The extent to which the results presented here de-
pend on the particular choice of wavelet in the analysis
methodology is a critical issue. The use of the Morlet
wavelet is justified by the need for finding an “atom”
that possesses a structure similar to the actual surface
wave groups. In particular, the nonlinear evolution of a
wave group has been shown to be strongly related to
wave breaking (Banner and Tian 1998). In keeping with
this idea, this analysis is based on the search for com-
pact wave groups in the data. The Morlet wavelet
clearly has a structure that allows for the detection of
wave groups in data.

A question that is extremely pertinent to the evalu-
ation of the developed methodology is whether a finer
interval of scales yields a drastically different result. We
have performed data processing with twice as many
scales evenly spaced over the same bounds (e.g., if a �
2, 4, 6, . . . , then new scale vector a � 2, 3, 4, 5, 6, . . .)
and have found very little difference in the results.
Thus, it can be surmised that the increased redundancy
in scale produces a negligible effect in the statistical
results. The box filter used in selecting only the peak in
a local neighborhood of Wf(a, s) yields the convergence
of the two calculations.

Another issue concerning the wavelet analysis meth-
odology is the dependence of the results on the number
of waves in the Morlet wavelet packet. Morlet wavelets
of wavenumbers K0 � 5, 6, 7 . . . are all admissible. How
robust are the results if this parameter is changed? Fig-
ure 9 shows �T(k) calculated through the use of the
Morlet wavelet corresponding to K0 � 5, 7, and 9. The
mother wavelet has gained more oscillations with in-
creases in wavenumber K0 and the width of the wavelet
has expanded. This expansion allows for greater reso-

TABLE 1. Correlation coefficients � for the DNC experiment
and SOWEX for different wave slope thresholds.

T � 0.01 T � 0.05 T � 0.09

DNC 0.91 0.92 0.49
10 Jun SOWEX 0.58 0.92 0.62
12 Jun SOWEX 0.91 0.94 0.73
13 Jun SOWEX 0.64 0.71 0.70

FIG. 9. The steep wave statistic �T(k) vs k for different wave
slope threshold values for the DNC experiment. Numbers in fig-
ure indicate slope threshold T. Morlet wavelet of wavenumber (a)
K0 � 5, (b) K0 � 7, and (c) K0 � 9.
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lution of high wavenumbers at the expense of greater
uncertainty in locating events in space. The structural
change in the atom used in the analysis has conse-
quences for the estimation of �T(k). Steep wave events
are detected from the peak value of the wavelet trans-
form exceeding a set threshold. With the Morlet wave-
let of wavenumber K0 � 9, waves must be coherent
over a longer distance in order to be detected as an
event, compared to the analysis with a Morlet wavelet
of lower wavenumber. Thus, it is expected that the
overall amount of very steep wave events detected
should decrease with increasing K0 values for the same
wave slope threshold. This is indeed exhibited in Fig. 9.
However, even if a different K0 is chosen, all charac-
teristics of the results discussed earlier remain qualita-
tively the same, that is, the steep wave statistic decays
exponentially with the slope squared and shows a mod-
erately strong correlation with the degree of saturation.
A more detailed sensitivity study is found in Scott
(2003).

The 95% confidence limits for �cT(k) are plotted in
Fig. 10. The steep wave statistic was assumed to be
normally distributed with the error bars at a single wave
slope threshold expressed as

���T �
s� � tM�1,
�2

�M �� �T � ��T �
s� � tM�1,
�2

�M ��.


15�

The mean steep wave statistic over the set of observa-
tions is designated as �T, where M is the number of
samples of the steep wave statistic, s� is the square root
of the sample variance, and �T is the true steep wave
statistic. The value tM�1,�/2, obtained from the Student’s
t distribution table, is the value such that

prob�tM�1 � tM�1,
/2� �



2
, 
16�

where � � 0.05 is the area under the Student’s t distri-
bution curve. The interval is the symmetric interval
with 2.5% on each side of the curve. The error bars are
tighter at low wave slope thresholds than at high wave
slope thresholds because of the decrease in variance in
the signal.

6. Conclusions

The wavelet analysis methodology presented here is
able to detect steep wave events and give estimates of
the amount of high wave slope events that cover a given
area of ocean. Analysis of the results shows that high
wave slope crests appear over the entire range of wave-
numbers resolved, with a large amount being much
shorter in wavelength than the dominant wave. At low
wave slope thresholds, the total crest length is approxi-
mately independent of wind forcing for all wave fields
considered. The steep wave statistic �cT(k) then decays

exponentially with the square of the slope threshold T.
The exponent p of the exponential decay is smaller for
higher winds, yielding a larger number of very steep
wave events.

If the steep wave statistic is hypothesized to evolve
into the breaking wave statistic at a specific wave slope
threshold, comparison of �cT(k) with previous indepen-
dent measurements of the breaking wave statistic gives
a wave slope threshold of about 0.12. This threshold is
consistent with the results of the numerical studies of
Dold and Peregrine (1986). Comparison of the steep
wave statistic at this extrapolated wave slope threshold
with independent breaking wave measurements sug-
gests that the steep wave statistic does not scale with
the cube of the wind speed with other factors besides
the wind speed affecting its level. Finally, �cT(k) at
moderately large wave slope threshold correlates with
the saturation spectrum B(k) reasonably well.

FIG. 10. The steep wave statistic �T(k) vs k for different wave
slope thresholds (indicated by the numbers in the plots). Dashed
lines are 95% confidence limits. (a) DNC experiment and (b) 10
Jun SOWEX.
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APPENDIX

Preservation of Wave Slope under
Wavelet Transform

Two signals whose wave slopes, S � A � k (where A
is amplitude and k is wavenumber), are equal will have
equal peak values of the wavelet transform Wf(a, s) at
each of the signals’ respective scales. To illustrate how
this transform preserves the local average wave slope of
a signal, consider two sinusoidal signals,

f1
u� � A cos
ku� 
A1�

f2
u� �
A

m
cos
mku�, 
A2�

where m is a positive constant. These signals have wave
slopes Wf1(a, 0) and Wf2(ã, 0), respectively, which are
equal. Here a and ã � a/m are the scales of the respec-
tive signals corresponding to wavenumbers, k and mk.

The wavelet transform of f1(u) is

Wf1
a, s� � �
��

�

f1
u�
1

a2 ��u � s

a �du

� �
��

�

A cos
ku�
1
a

��u � s

a � 1
a

du. 
A3�

Consider the wavelet transform at zero translations, s �
0. Then

Wf1
a, 0� � �
��

�

A cos
ku�
1
a

��u

a� 1
a

du. 
A4�

Let us introduce the following change of variables,

u � mũ du � mdũ, 
A5�

which moves the signal and wavelet to another scale.
Then

Wf1
a, 0� � �
��

�

A cos
kmu�
1
a

��mu

a � m

a
du, 
A6�

where the tildes have been dropped. This equation can
be rewritten as

Wf1
a, 0� � �
��

� A

m
cos
kmu�

1
a�m

�� u

a�m� 1
a�m

du

� �
��

� A

m
cos
mk · u�

1
ã

��u

ã� 1
ã

du

� �
��

� A

m
cos
mk · u�

1

ã2 ��u

ã�du

� �
��

�

f2
u�
1

ã2 ��u

ã�du � Wf2
ã, 0�, 
A7�

where ã � a/m. Hence, the peak values of the transform
are identical for the two signals.
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